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Abstract. In the adiabatic approximation the connection of the Beny phase with the quasi- 
classical trajectory-coherent slates of the Schrirdinger-type equation (with the arbitrary 
scalar %(pseudo) differential operator) and the Dirac equation in the external penodic 
electromagnetic field is studied. 

1. Introduction 

A traditional problem in the physical literature on the correspondence between the 
results of classical and quantum mechanics has attracted attention again, due to the 
discovery of a new quantum effect known as Berry's adiabatic phase [I ] .  The essence 
of this phenomenon consists of the following. Let a system undergo an adiabatic evolu- 
tion by means of a quantum Hamiltonian depending on time by a set of T-periodic 
functions R ( t ) = ( R l ( t ) ,  . . . , R N ( f ) ) .  If the system was prepared in some discrete non- 
degenerate eigenstate %(R(O)) with the energy E,(R(O)) at the initial moment t = O ,  
then the wavefunction of the system Yn(T) will coincide with (P,(R(O)) up to a phase 
factor, so that 

where 

Here Cis  a closed curve in parametric space ( R I , .  . . , RN) round which the system is 
transferred. Hence, in addition to the standard dynamical phase - li-' Edf, the wave 
function acquires a new phase term y,(C)-the Berry phase-which is only determined 
by the set of quantum numbers n associated with the eigenstate %(R) and by the 
counter C. 

For the quantum systems corresponding to the bounded integrable Hamiltonian 
ones, the solution of the problem in the quasi-classical approximation for the Berry 
phase y. is as follows [Z]. In this case the system, as a rule, admits a d-parametric 
family of invariant d tori Ad (where d is the dimension of the configuration space). 
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From this family, the tori giving rise to the quasi-classical spectral series [%, En] are 
chosen by means of the Bohr-Sommerfeld-Maslov quantization conditions 
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where {l,} is a basis of one-cycles on Ad, and a -ind 4 are the Maslov indices. The 
explicit form of the quasiclassical eigenstates Qn IS given by the Maslov canonical 
operator with real phase [3]. Then, taking one of such eigenfunctions Qn as an initial 
state of the quantum system, Berry showed that at f i+O the relation 

I - .  

holds, where AQj are the Hannay angles whose appearance in classical mechanics is 
described in [4]. However, one should take into account that the quantization rule (1.3) 
is, generally speaking, applied only for sufficiently large quantum numbers nI- O ( f i - ' ) ,  
A-90, j = c d ,  and, therefore, the asymptotics Q,, describe highly excited states of a 
quantum system. 

Note that the quasi-classical limit of Berry's phase for integrable quantum systems 
was discussed in [S-IO]. 

What is more of interest in the present context is to consider the adiabatic evolution 
of a quantum system in the state corresponding to small quantum numbers and to gain 
an insight into the corresponding quasi-classical approximation for the Berry phase. 
Analysis of the well known exactly solvable problems (e.g. see [ 111) shows that small 
quantum numbers are also associated with Lagrangian tori, but with a smaller dimen- 
sion than that of configuration space. For example, a zero-dimensional torus 11' is a 
rest point of the Hamiltonian system, and a one-dimensional torus A' is a closed phase 
curve which is orbital stable in the linear approximation. A similar situation exists for 
non-integrable Hamiltonian systems as well, when, as a rule, no family of the d- 
dimensional Lagrangian tori can be found. Nevertheless, it is often the case that a 
non-integrable system possessing a certain set of motion integrals permits tori whose 
dimensions are smaller than d [12]. 

The general theory of quantization of small-dimensional Lagrangian tori and con- 
structing the corresponding quasi-classical spectral series (the theory of the Maslov 
complex germ) was developed in [ 11, 13, 141 (see also [ 151 for the Dirac equation). The 
key point of this theory consists of reducing the initial problem of constructing asymp- 
totic solutions to investigation of the classical mechanics equations describing a Lag- 
rangian (to be more precise, isotropic [ 141) manifold with a complex germ. 

In the present paper we obtain the expression for the Berry phase, generated by the 
adiabatic motion of a zero-dimensional Lagrangian torus with a complex germ, by 
means of a special class of localized dynamic states (the so-called quasiclassical 
trajectory-coherent states [ 161). The method proposed makes it possible to consider, 
from a single point of view, the quantum systems described by the arbitrary A (pseudo) 
differential scalar operators depending on time f by a set of slowly changing T-periodic 
functions R(f). The results obtained are extended to the case of the Dirac operator 
in external T-periodic electromagnetic fields and illustrated by a particular physical 
example. 
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2. Quasi-classical spectral series corresponding to zero-dimensional Lagrangian 
manifolds AO(R) 

Let fi(R)=H( -ifia/aq, q, R, f i ) ,  q s R i ,  be a Weyl-ordered fi (pseudo) differential sca- 
lar operatcr depending on R= (RI, . . . , RN) real parameters. The main symbol of the 
operator H(R) is denoted by X ( p ,  q, R)= H(p,  q, R, 0) .  Consider a spectral problem 
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(fi(R)-E)YYE(q, R, f i ) = O .  (2.1 ) 

It is necessary to construct a special class of asymptotic mod O(fi3'*) solutions of equa- 
tion (2.1) corresponding in the quasi-classical limit fi-0 to a stationary rest point of 
the classical system described by the Hamiltonian function X ( p ,  q, R). The main ideas 
used in constructing such solutions (e.g. see [ 131) are as follows. 

Let Ao(R) = (P=Po(R), q= Qo(R)} be a rest point? of the function X ( p ,  q, R), i.e. 
the conditions 

&(Po(R), Qo(R), R)=O *q(J'o(R), QdR), R)=O (2.2) 

are valid. The rest point Ao(R) is non-degenerate if the matrix 

is non-singular. Introduce a Zn-dimensional vector a(t)  =( W(t), Z(t))T and consider 
the system in variations 

a(t)  = Xva@)a(t). (2.3) 

(Here and below a dotted term implies a derivative with respect to t.) The non- 
degenerate rest point Ao(R) is called stable in the linear approximation, if all the 
solutions of equation (2.3) are limited at ~ E ( - c o ,  CO). Then, if the classical system 
pirmits a point of the above type, there exists n linearly independent solutions 
~ ( t ) ,  k = f i  of equation (2.3) such thatf 

{ax, $) =2i&, { a k ,  @) = o  k, I=- (2.4) 

4) = exp(i4(R)Oak(R) Im 4 ( R )  = 0. (2.5) 

where 

In other words, a set of number Qk(R) and vectors ak(R) =( Wk(R), Zk(R))T obey the 
system 

Xvar(R)ak(R) = iQAR)ak(R). (2.6) 

A complex n-dimensional plane spanned by the vectors uk(R) is a complex germ at the 
point A'@) and is denoted by t"(Ao(R)). 

t The rest point A' is also called a zero-dimensional Lagrangian t o m .  
d Here and below the curly bracket (. , .} denots the antisymmetric inner product. 
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The vectors u,(R) and &(R) of the complex germ are related by the creation and 
annihilation operators 

(2.7) 

where 

(2.8) 
a 
a4 

A$= -ifi--Po(R) & = q -  Qo(R) 

are the operators of small deviations from the equilibrium position Ao(R).  The operators 
(2.7), owing to relations (2.4), satisfy standard Bose commutation rules 

[r?* I $1 SW [& , SI] = [& , ci:] = 0 k, l=z. (2.9) 

Set up square n x n matrices from the vectors IVk(R) and Zk(R): 

B ( R ) = ( W i ( R ) ,  . . . , W A R ) )  C ( R ) = ( Z l ( R ) ,  . . . , Z,(R)).  (2.10) 

It follows from equations (2.4) that the matrix C ( R )  is non-singular. In this way one 
may determine the symmetric matrix Q(R)  = B(R)C-’(R) with a positivedefinite imagi- 
nary part: Im Q(R)>O. 

Introduce a vacuum state 

(2.11) 

where the complex phase S(q, R )  has the form 

s(q, R ) =  (Po(R), 4 )  +kh Q(R)Aq> (2.12) 

and N0(fi)=(fff i ) -n/4 is the normalization factor: (0, RIO, R ) , = l .  Now determine a 
set of functions I v ,  R )  as a result of the action of the creation operators S l ( R )  on the 
vacuum state (2.11): 

(2.13) 

Then the following statement is true 1131. 

Proposition 2. I .  The functions (2.13) are the asymptotic mod O( ti”’) solutions of the 
spectral problem (2.1) 

I 

[ @ R )  -&(R)]l v, R)=O(h3”) (2.14) 

&(R) =Eo(R) + 01 (R) (  V I +  1) + Offi’) (2.15) 

with the eigenvalues 

I -  I 
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where Eo(R) = X ( P o ( R ) ,  Qo(R), R )  and form a complete orthonormal set of states 

( v ' , R I v , R ) L ~ = ~ ~ ~ , .  (2.16) 

The eigenfunctions 1 v ,  R )  -and the eigenvalues E,(R) make up a quasi-classical 
spectral series of the operator H ( R )  corresponding to the zero-dimensional Lagrangian 
manifold Ao(R).  

3. Trajectory-coherent states and adiabatic Berry's phase 

3.1. Statement of the problem 

Consider the following evolution equation of the Schrodinger type 

[-iha,+&t)l~(q,  t ,  R ) = O  (3.1) 

where f i ( t )  = H[ -ifia/aq, q, I, h), qEIW; ,  is an f i  (pseudo) differential operator (in gen- 
eral, arbitrarily depending on t )  with the main symbol X ( p ,  q, 1 )  = H(p,  q ,  I, 0). On 
the basis of the Maslov complex germ method [13], for equation (3.1) the asymptotic 
mod O(h3") solutions may be constructed in the form of the wave packets-the quasi- 
classical trajectory-coherent states (TCSS) Y,(q, I ,  f i )  = I v ,  t )  (e.g. see [ 161). 

Let r , = b = p ( t ) , q = q ( t ) }  he an arbitrary (but fixed) solution of the canonical 
system 

P W  = - %(P, 9, t )  4 W = m P ,  9, 0.  (3.2) 
Quantize system (3.2) in the neighbourhood of the trajectory r, by the Maslov complex 
germ method. For this purpose consider the system in variations 

60) = Xadt )a ( t ) .  (3.3) 
obtained as a result of linearizing the Hamiltonian system (3.2) in a small domain 
aroundr,. Letak(t)=( Wk(t) ,  Z k ( t ) ) = , k = f i ,  beasetofnlineatlyindependentcomplex 
solutions of equation (3.3) obeying conditions (2.4)t. 

Like in the previous section, we obtain complex n x n  matrices B(t )=  
(E',([), . . . , E',,([)) and C(t )=(Z, ( t ) ,  . . . , Zn(t)) from the components of the vectors 
a,([), where det C(i)#O. For each trajectory r, there is the vacuum TCS 

(3.4) 

with the complex phase 

S(q, 0 = [ dt((p(0,4(t)> -W)) + MO, Aq)+4<Aq.  Q(0W (3.5) 

where No(h)=(lrh)-"'4, Q(t)  = B(t)C-'( t )  and Aq=q-q( t ) .  By introducing the opera- 
tor A@= - ifia/aq-p(t), by analogy with equation (2.7), we may construct the creation 
$ ( t )  and annihilation &(t )  operators satisfying, as one can easily see, the same commu- 
tation rules as in equation (2.9). It is not difficult a t  all to see the validity of the 

7 In this case at each fixed 1 the n-dimensional complex plane spanned by the vectors a&) forms the complex 
germ at 1,. 
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conditions & ( r ) l O ,  r ) = O ,  k = G .  By means of the creation operators c?l(f) construct 
a set of the TCS:  

A Yu Trfonov and A A Yevseyevich 

(3.6) 

The following results are justified. 

Proposition 3.1. Functions (3.6) are the asymptotic mod O(fi3'2) solutions of equation 
(3.1), and at each fixed t they form a complete orthonormal set: 

( v ' ,  tlv, t h 2 = 6 v v . .  (3.7) 

It should be noted that from the condition Im S(q, I) >O follows the localization of 
states (3.6) in the neighbourhood of the classical trajectory q=q(t)-the projection of 
r, onto Rz . 

Following Berry, we now consider the quantum Hamiltonian i ( t )  =k(R(f)) 
depending on t through a set of slowly changing T-periodic functions 
{R,(t), . , . , RN(t)}=R(t). Denote the main symbol of the operator I?(R(t)) by 
X(p,  q. R(t)). For the Hamiltonian system (3.2) corresponding to the function 
&(p ,  q, R ( t ) )  at the initial moment of time to we take 

p(lo)=Po(Ro) d t o )  = Qo(Ro) (3.8) 

whereAo(Ro)=(Po(&), eo(&)), &=R(to), isastationary, in thelinearapproximation, 
rest point of the function X ( p ,  q, Ro). In its turn, for the system in variations (3.3), as 
initial conditions we choose the set of vectors 

4 f O )  =4&) k = G  (3.9) 

satisfying conditions (2.4) and (2.6), and forming the complex germ P(Ao(&)) at the 
point Ao(Ro). Thus, the Cauchy data (3.8) and (3.9) define the geometrical object 
[Ao(Ro), r"(Ao(Ro))]-a zero-dimensional Lagrangian manifold with complex germ to 
which, according to the rules (2.13)-(2.15), the  ̂ quasi-classical spectral series 
[Ev(Ro), I v,  Ro)] of the instantaneous Hamiltonian H(Ro) corresponds. 

Let [r,, r"(r,)] be a solution of the initial value problem (3.8) and (3.9). By its 
quantization by the complex germ method (see equations (3.4)-(3.6)) we obtain a set 
of the quasi-classical TCSS I v ,  t ) .  Comparing the explicit form of the functions I v ,  1 )  
and I v ,  Ro), one may make sure of the validity of the equality 

Iv, ~ ) l , = r o = I ~ , R o ) .  (3.10) 

Hence it follows that at each fixed v the function I v ,  t) (equation (3.6)) is the approxi- 
mate mod O(fi3/') solution of the Cauchy problem (3.10) provided equations (3.8) and 
(3.9) are valid. 

Let us study the Cauchy problem (3.10) in the adiabatic approximation. The solution 
will be carried out on the assumption that the quasiclassical spectrum (2.14) of the 
instantaneous Hamiltonian h(R(t)) is non-degenerate for all the values oft .  

3.2. Adiabatic evolution of a classical system 

In this subsection the adiabatic solutions of the Hamiltonian system (3.2) with the 
Hamiltonian function X ( p ,  q, R ( f ) )  and the system in variations (3.3) corresponding 
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to it will be constructed under the adiabatic change of the vector R ( t )  in the space of 
the parameters ( R ,  , . . . , R N ) .  The solution will be made in terms of the formal asymp- 
totic power series in a (small) adiabatic parameter T-' (e.g. see [l7, IS] where the 
evolution time T (the period of R(t ) )  is assumed to be rather larget. D e h e  a 'slow 
time' variable s by s=t/T and put 

&) = R(t1 lr - s~ .  (3.11) 

We start by considering the Hamiltonian system (3.2) whose solution 

will be examined as 

(3.12) 

where 8 = ( TOl@), , . . , P&(s)) is a set of 'rapid' variables in which the real functions 
Ok(s), k = G ,  do not depend on Tand are to be determined. Calculating the derivative 
uith respect to t by the formula a,=(l/T)&+W(s)ae and denoting by a prime the 
derivative with respect to s, we obtain 

1 1  
T 

X ( t )  =&s) +-X(s,  8 )  + O( T-') 

where 

(3.13) 

(3.14) 

Thus, the vector 

describes the stationary point A'(&)) of the function 2 ( p ,  q, &)) at each ked value 
of s, which, according to the above, implies 

(3.15) 
a s ,  = Po(&)) = Po(R(0)  

k4 = Qo(&)) = Qo(R(0). 

Further, froq equations (3.13) and (3.8) in the first approximation the equation for 
the function X(s,  8) is 

I 
(3.16) a 1  

a0 
W(s) - X = ~ , , ( s ) X - 2 ~ ( s )  

t It is assumed that the all asymptotics when the Planck constant goes to zero will be true in the adiabatic 
approximation at T - a .  
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with the initial condition X(s,  O)l,=so=O, where so=to/T. Let us assume that 

A Yu Trifonov and A A Yeuseyeuich 
t 

I x ( ~ ,  e)= i: {ckcS, e ) m +  (5,h e&s)) 
k =  I 

wherefa($) =a&($)) are the eigenvectors of the instantaneous matrix %,.(s), 

(3.17) 

x,r(s)f*(s) = i l ; l k ( R ( S ) ) s k ( S )  Im !&(&)) = o (3.18) 

obeying the relations (2.4). Inserting (3.17) into (3.16) and allowing for the solution 
obtained to be Zn-periodic with respect to all the rapid variables O k t  leads to the 
functions 

and the coefficients 

(3.19) 

(3.20) 

Here, Ek(s) are the integration constants which depend on s as a parameter so that the 
initial condition Ck(s, 8)1,=,=0 is fulfilled. (Their explicit form can be found from the 
following approximation.) As a result we obtain the solution of equation (3.16) in the 
form 

Thus, allowing for equations (3.15) and (3.21) function (3.22) is the approximate mod 
O(T-’) solution of equation (3.2) describing the adiabatic evolution of the classical 
system. 

Now we proceed to construction of the approximate mod O(T-*) solutions of the 
system in variations (3.3). The solution is sought in the form 

k = G  (3.22) 

where 2=(01, ebn, &), j ,  I, i n = f i ,  is a set of rapid variables which, apart from the 
old variables S j ,  includes new ones e,,,,= T@&), gIm= T~, , . ( s ) .  Substituting equations 
(3.12) and (3.22) into equation (3.3), we get 

1 
T 

Q(r) = &(S, ek) f - &(S, e )  + o( T-’) 

aik 1 a& I 1 n -_ ’ “‘+(DL(s) -+- @‘(s) -=%&)&+ - %&)& +- .T&(s, e)& +0( T-’) 
T as ae, T aE: T T 

(3.23) 
where 

*A(s, e) = de, e), X~,JS)) + (be, e), & m . p ( ~ ) ) .  (3.24) 

t This additional condition makes it possible to choose a solution (which is of interest for us) from the 
complete integral, 
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In the zero-order approximation, in view of equation (3.19), we obtain the equation 

(3.25) a& 
80, 

Qk(l?(s)) -=%mr(s)ik 

and its solution is 

&(& 0,) = ~ s )  exp[i(~k+-~(s)) l .  (3.26) 

The solution (3.26) contains the function ,Y(s), which is indeterminate in this approxi- 
mation, but from condition (3.9) it follows that Nk(so) = O .  Next, by allowing for equa- 
tion (3.26) from equation (3.23) we have to the order T-' 

~ s )  --~e,,,(s)~k=exp[i(~k+-~(s'*fs))~{~~~(s, ~ ) j ; - i . ~ ( s ) j ; - f ~ s ) ) .  

By analogy to equation (3.17) the solution of equation (3.27) is chosen in the form 

(3.27) ahk 
as 

(3.28) 

(3.29) 

Then from equation (3.27) we obtain the following system of equations which define 
the coefficients b; and 6;: 

(3.30) 

(3.31) 

The requirement on the 2n periodicity of the functions bi with respect to all the variables 
E: is, in this case, equivalent to the validity of the following conditions: 

(3.32) @k/(s) = @k(s) - @I (s) 

and 

(3.33) 

Here, X&(&s)) denotes a part of the matrix (3.14) which is independent of the variable 
0, i.e. 

(3.34) 

The same condition imposed on the coefficients 6; leads to the functions &/k: 

&/k(s)=@k(S) fa/(s). (3.35) 
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By means of formulae (3.32)-(3.35) it is not difficult to get an explicit form of the 
functions bk and 6;: 

(i) For k = i :  

A Yu Trfonou and A A Yeuseyeuick 

(ii) For k # I :  

bL(s, e) =bL(s) exp(i(8,- e,)] 

(iii) For all k and I :  

&(s, e) =6& exp[ -i(&+ e,)] 

(3.37) 

(3.38) 

To define the functions b:(s), &) appearing in equations (3.36)-(3.38) we need the 
following order of T-' .  Due to equation (3.9) their initial values b:(so) and &(so) are 
found from the conditions bL(s, @)I,=,=& e)(,-,=O. 

The following should be noted in conclusion. The assumption on non-degeneration 
of the quasi-classical spectrum (2.14) made at the end of section 3.1 implies that no 
resonance relations CPI @&=O(ll,. . . , 1, are integers) exist between the frequencies 
a,, . . . ,a.. This condition was mainly used when deriving formulae (3.36)-(3.38). 

3.3. Berry's phase 

Now we return to the adiabatic solution of the Cauchy problem (3.10). It follows from 
the previous section that: 

(i) For the solution of the Hamiltonian system (3.2) which obeys the initial condition 
(3.8), according to equations (3.12) and (3 .19 ,  we obtain 

p(r)=PrJ(R(t))+O(T-')  
(3.39) 

dO=Qo(R(O)  +O(T-'). 

(ii) The solutions of the system in variations (3.3) obeying the initial conditions 
(3.9), as foUows from equations (3.22), (3.26) and (3.33), have the form 
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where 

&(R(O) {&(R(O), ( ~ - ~ ~ ~ ( R ( t ) ) ) u ~ ( R ~ ~ ) ) } .  (3.41) 

The matrix Xd.(R(t)) appearing here was defined in equation (3.34) and, according 
to formulae (3.21) and (3.24) may be represented as 

XA,(R(O) = <vXar(R(t)), k ~ ) ) )  (3.42) 
1 

where V=(a/ap ,  and the vector X ( R ( t ) )  is 

By substituting expressions (3.39) and (3.40) into equation (3.6) we obtain after simple 
calculations 

Iv, t>=lv, R ( t D  exp dt Ev(R(0)+i  J' ( p d R ( f ) ) ,  dQOo(R(0)) 
fi 9 

(3.44) 

Whence it follows that, if a quantum system at an initial moment of time t =  to is in its 
eigenstate Iv, &) corresponding to the energy level Ev(Ro), then, during the time T 
with the adiabatic change of the vector R(t),  where R( t+  T ) = R ( t ) ,  a system returns 
to its initial state by acquiring an additional phase. By comparing (3.44) and (1.1) we 
obtain for the Berry phase 

(3.45) 

To emphasize a purely geometrical meaning of phase (3.45) we rewrite it as follows: 

- 
(3.46) 

where, due to formulae (3.41)-(3.43) 

(3.47) 

Here Cis a circuit round which the end of the vector R ( f ) ,  te[O, TI, moves in the space 
of parameters ( R I , .  . . , RN), 

As may be inferred from equations (3.46) and (3.47) the Berry adiabatic phase 
y.(C) is completely defined by the two following (caused by the classical motion) 
geometrical functions: 

(i) The trajectory An(R) =(Po(R),  &(R)), REC,  consisting of stable (in the linear 
approximation) rest points of the Hamiltonian system. 
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(ii) The complex germ P ( A o ( R ) ) , R ~  C, consisting of n linearly independent eigen- 
vectors ak(R), k = G ,  of the matrix $=(R) and normalized by condition (2.4). 

4. Berry’s phase for a generalized harmonic oscillator 

We shall illustrate the results obtained above by the classical example of a one- 
dimensional generalized harmonic oscillator described by the Hamiltonian 

$1) = I ~ ( t ) ~ ’ t a ( 1 ) 6 * + p ( f ) ( B B + ~ ) l  (4.1) 

where R= ( p ,  0, p)  are the parameters specifying the adiabatic evolution of the quan- 
tum system. The corresponding classical Hamiltonian is 

HP, 4. R ( O ) = ~ ( P ( O P ’ +  d r ) $ + 2 ~ ( O ~ d .  (4.2) 

At p’fpcr, function (4.2) has only the rest point Ao=(fo=O, Qo=O) .  The require- 
ment for the point A’ to be stationary in the linear approximation results in an addi- 
tional condition p’<pu, In this case the spectral problem for the matrix 8var(R)  
permits the following solution: 

= (-p+Y) (4.3) 

where n(R)  = c-, < = sgn p ,  and {a(R),  &R)} = 2i. But then for the Berry phase 
according to equations (3.46) and (3.47) we obtain the value 

coinciding with the result of [2]. A similar method of deriving formula (4.4), but based 
on the correlated coherent states was proposed in [19]. 

5. Berry’s adiabatic phase for the Dirac wavefunction 

Now consider the Hamiltonian 

&(R) = c(a, P) + p,mc’+ eAo (5.1) 

describing a Dirac particle in an electromagnetic field with potential Ao(x, R), A(x, R) 
depending on N parameters ( R I , .  . . , R N ) = R .  Here b=i- (e/c)A(x,  R), B= -%a, 
are the kinetic and generalized momenta operators, e =  -eo is the electron charge, and 
a=p&,p, are the Dirac matrices in the standard representation. The symbol of the 
operator(5.1)is theHermitian matrixofthe formxB(p,  x, R)=c<a, P ) + p 3 m ~ + e A o ,  
where P = p - ( e / c ) A .  The spectral problem for the matrix &’D, 

wDnr = n(*)n, (5.2) 
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has the following solution [20] : 
A'*'(p, x, R )  = eAo(x, R )  f E E =  (c'P' +m2c4)'" 
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(5.3) 

(5.4) 

where U= (crl , u2, 03 are the Pauli matrices, /I= (c /&)P,  2;-' = (1 -p)'/'. Mat$ces 
(5.4) satisfy the orthonormality and completeness relations; IT;, ne= 6,,, C; lT;,II;= 
1, c=&l.  Let the function A(+' (p ,x ,R)  possess at each fixed R a stationary, in the 
linear approximation, rest point Ao(po(R),  xo(R)) ,  then the complex germ r'(Ao(R)) 
corresponding to it is formed by the vectors (2.4)-(2.6). 

Denote the magnitude of the magnetic field at the point x = x o ( R )  by H(R)  and 
consider the following two-component spinor problem: 

where d ( R )  = (eo/2mc)H(R) is the 'polarization' vector at the rest point. Assuming 
H(R)/IH(R)I = (sin 0 cos q, sin 0 sin q, cos 0) it is not difficult to obtain a general 
solution of equation (5.5). Really, Q,(R)=clB(h)(  are the eigenvalues with the 
eigenvectors 

(U, B(R))Uc(R) = W R ) U ; ( R )  (5 .5)  

obeying the orthonormality and completeness relations: Le, us= S,,<, E, ur$= 1. 
Now we introduce the following: 
(i) The Weyl-ordered li pseudodifferential operator / i+(R) =A(''(j, x, R )  with the 

Hamiltonian function A'+'(p, x, R), and construct the quasi-classical spectral series 
[E,(R),  I Y ,  R ) ]  corresp:nding to the rest point A0(R) for it (see section 2). 

(ii) The operator Qk(R), k= 1,2, defined as 

h"'2&(R) = -c (a, 8 P ( R ) )  (5.7) k !  
where i k P ( R )  implies the kth term in the Taylor power expansion over the operators 
Ab=B-pa(R),  A x = r - x o ( R )  in the neighbourhood of Ao(R).  

(iii) The matrices ITy(R) = IT&, x, R)~,,o(R) which, due to the condition P(R) = 
(l /c)f(R) =0, are likely to be equal to 

Then, the following statement is true. 

Proposition 5.1. If 
&,<(R) = E J R )  + N U R )  + O(fi2) 

then the functions 
(5.9) 

(5.10) 

localized in the neighbourhood of Ao(R) are the asymptotic mod O(li3'*) eigenfunctioas 
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of the operator SD(R), 

and form with an accuracy 0(fita) a complete orthonormal set of states 
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[ k d R )  - & , s ( R ) ~ ~ E ~ , w ) ( ~ ,  fwwn (5.11) 

( Y E w ,  Y&= 1 d 3 ~ ~ ~ w Y ~ , = G ~ ~ + O ( f i ” 2 ) .  (5.12) 

The sequence [E,<(R), YEJR)] iFtroduced in this way is the quasi-classical 
spectral series of the Dirac operator HD(R) corresponding to the zerodimensional 
Lagrangian torus AO(R). 

Now we turn to the discussion of the case when the Dirac operator kD(R(f)) (5.1) 
depends on N slowly changing T-periodic functions of time (Rt ( t ) ,  . . . , RN(t))=R(t). 
It is necessary to construct the approximate mod O(fi’/’) solution of the equation 

[ - i f i a , + ~ ~ ( R ( / ) ) ] y ~ ( X ,  1, fi)=o(fi3/2) (5.13) 

obeying the initial condition 
y D ( x ,  1, f i ) ~ t - f o = ~ E v , ~ d ~ ,  f i )  (5.14) 

where on the right-hand side of equationl5.14) one of the asymptotic eigenfunctions 
(5.10) of the instantaneous Hamiltonian HD(&) =HD(R(to)) is chosen 

The solution of this problem is expressed by means of the following: 
(i) The phase trajectory r,= (p=p( t ) ,  x=x(t)}-the solution of the Hamiltonian 

system (3.2) with the Hamiltonian L(+)(p, x, R(1)) which satisfies the initial condition 
r,(t = t o )  = A0(Ro) = (PO(RO), XO(RO)). 

(ii) The function I v ,  f ) - t h e  approximate mod O(fi’/’) solution of the Cauchy prob- 
lem (3.10) for the equation 

[-ifia,+p(R(t))]lv, t>=O(fi’”). (5.15) 
(iii) The spinor vc(t)-the solution of the Cauchy problem for the spin-only 

equation 

(5.16) 
(-idl+(. .~(t)))u~(i)=o d 

V<(Olr-ts= Vc(Ro) (5.17) 
with the initial spinor v<(Ro) (equation (5.6)) and the ‘polarization’ vector 

(5.18) 

where Hand E are the magnetic and electric components of an external electromagnetic 
field. 

(iv) The operators &(t) ,  k =  I ,  2, by setting 

(5.19) 

(5.20) 
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Here s^'P(t), k =  1,2, denotes the kth term in the Taylor power expansion over the 
operators Aj=$-p ( t )  and h r = x - x ( t )  in the neighbourhood of the trajectory r, .  

Then, as follows from the results of [ZO], the function 

is the asymptotic mod O(fi3") solution of the Cauchy problem (5.13) and (5.14). 
Now we obtain the asymptotic expansion of the state (5.21) in terms of the small 

parameter T-' (with an accuracy O(T-')) ,  allowing for the adiabatic change of the 
vector R(f). As in the scalar case, we assume that the Dirac operator fio(R(f)) has the 
non-degenerate quasi-classical energy spectrum at each fixed I .  

First of all, making use of the asymptotic formulae (3.39) it is easy to verify that 
the expression enclosed in the brackets in equation (5.21) with an accuracy to O(T-') 
coincides with the corresponding one of equation (5.10). Since the formula describing 
the adiabatic evolution of the state Jv, t )  was obtained by us earlier (see equation 
(3.44)), the task of constructing the adiabatic approximation for the Dirac function 
(5.21) is reduced to deriving the asymptotic in T-' solutions of equation (5.16). We 
provide this in the appendix. Ultimately, we arrive at the following result: 

u;(f) = uf(R(f)) exp( -i  1: dt n,(R(t)) + i  I:& n ~ ( R ( t ) ) ) + o ( ~ - ' )  (5.22) 

where 

(5.23) 

Here, the vector B'(R( t ) )  is equal to 

(5.24) 

Whence, in view of equations (3.44) and (5.22), we have 

3 :  
+i k- Z . [ o d t i 2 ~ ( R ( l ) ) ( v + $ ) +  I (5.25) 

where E,,c(R(t)) is the quasi-classical energy level (5.9) of the instantaneous Hamil- 
tonian HD(R(f)) corresponding to the eigenfunctions YE,r(R(r))(~,  fi) (equation (5.10)). 

If we denote now 

(5.26) 
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where 

A Yu Trifnov and A A Yeoseyevich 

then by comparing equations ( 1 . 1 )  and ( 5 . 2 9 ,  in conjunction with (3.46) and (5.26). 
we immediately obtain the expression for the Berry phase: 

yD(c)= yv(C)+YF(C). (5.28) 

So, in the quasi-classical trajectory-coherent approximation we have the following. 
During the process of the adiabatic evolution along a closed curve C in parameter space 
the Dirac wavefunction Yo acquires the Berry phase, which consists of two parts. 
One of them, y,(C), is induced by the adiabatic motion of the geometrical object 
[Ao(R), ?(Ao(R))], REC, and is determined by the scalar part of YD, i.e. the function 
Iv, t ) .  The second term, yr(C),  is due to the adiabatic transport of the spinor u,(R) 
around C and is associated with the spinor part of Y D .  

6. Berry's phase of the Dirac particle in the external periodic eleetromagnetic field 

Let the electromagnetic field be given by the potentials 

Adt )  = $ P ( O ~  A(r)=$H(t) x r  (6.1) 

where I is the radius vector, and p(f) < O ,  H ( f )  is a set of arbitrary T-periodic functions 
specifying the adiabatic evolution of the quantum system. Thus, in this case an instanta- 
neous state of the quantum system is characterized by a set of the parameters R =  

For the potentials (6.1) the magnetic component of the electromagnetic field 
coincides with the vector H(I) ,  and the electrical field is equal to E(r)= 
- ( 1 / 2 c ) h ( t )  x v-p(r)r .  The classical motion of an electron is described by the system 
of equations 

( P ,  H).  

where P=p- ( e / c )A( t ) ,  ~ ( f )  = ( ~ P * + M ~ c ~ ) " ~ .  From here it foUows that only a single 
rest point Ao=(po=O, ro=O) is possible. 

The set of equations (2.6) defining the eigenvectors a(R)=(W(R), Z(R))' of the 
matrix X&(R) at the point A' is conveniently written in the form 

(6.3) 

e 
2c W=iniGZ+- HxZ.  (6.4) 
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Inserting equation (6.4) into equation (6.3) we get the equation for Z. 

In terms of the spherical polar representation H =  [r sin 8 cos q, r sin B sin q, r cos 0) 
the solutions of equations (6.3)-(6.5) have the form 

(6.7) 
where N(R) = (ep/trt+e2?/4m2c2)-"4, and (n,, ne, nJ is the spherical orthonormal 
frame. Hence, for the Berry phase y,(C) (equation (3.46) (induced by the adiabatic 
motion of the complex germ) the expression 

?'v(C)=-C q ( v q + i )  (ns(R), &,(R)) (6.8) 

follows. It can also be written as a surface integral by the use of the Stokes theorem 
'I fc 

(ax= c) 

?'.(C)=-Xv(v,+i)JJ R <dndR)AddR))  
r 

Now we look for a 'spin' part of the Berry phase y<(C). The eigenvectors of the matrix 
u I ( R ) ,  where in our case I ( R )  = (eo/mc)H, due to formula (5.6), have the form 

Whence, by means of formula (5.26) we find 

(6.10) 

(6.1 I )  

It follows from equations (6.9) and (6.1 1)  that the overall Berry phase of the Dirac 
electron is equal to 
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The integral on the right-hand side of equation (6.12) is the Gauss integral, which is 
equal to the solid angle O(C)  of the circuit Cas viewed from the origin H =  0. Therefore, 
we finally have 

yo(C)=(v-+v+-J/2) i2(C).  (6.13) 

In conclusion, we note that the value yo(C) differs from zero only on the condition 
that all the components of the magnetic field H ( t )  are not equal to zero. In obtaining 
equation (6.13) p ( t ) # O ,  since otherwise (see equation (6.6)) the initial assumption of 
the non-degeneration of the quasidassical spectrum (5.9) is violated. 

A Yu Trfonov and A A Yeuseyeuich 
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Appendix 

We are going to find the approximation mod O(T-2)  solution of the Cauchy problem 
(5.17). In other words, we need to construct the function q ( t )  obeying the equation 

with the initial data (5.17). To solve this problem we use the method which was applied 
by us earlier in section 3 . 2  

On the classical trajectory x ( r )  =xo(&)) + ( I /T )x l ( s ,  e) +O(T-') (see formulae 
(3.12), (3.15) and (3.21)) governing the adiabatic motion of the classical system with 
the Hamiltonian function L(+'(p, I, R(r))  the polarization vector B(l) (5.18) admits 
the following expansion in the parameter T I :  

('4.2) 
1 B(t)=W(R"(s)) +- W ' ( S ,  e) +0( T-') 
T 

where 

B ( W ( s ) )  =eo H(ri(s))  (A3) 2mc 

and 

644) 
The solution of equation (AI)  is assumed to be an asymptotic series of the form 

('45) 
1 1  ur(t)=8&, e,)+- Z J ~ ( ~ , E ) + O ( T - ~ )  
T 

where E : = ( B ,  Oc, denotes a set of rapid variables, which, in addition to the vari- 
ables e, also contains two new variables er= m&), c= *I,  corresponding to the spin 
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degrees of freedom of an electron. Substituting equations (A2) and (A5) into equation 
(AI) and equating thy terms with the same order in 1/Twe obtain the equation defining 
the functions ;, and U,: 

(A61 
a;, 
80, 

-i@;(s) -+<U, ~ ( R ( s ) ) > e , = o  

After solving the first equation we obtain in the zero approximation (allowing for the 
condition of 2rr periodicity with respect to the variables e,) that 

e,(, e<) = vr(k(s)) exp[ - :(e,+ JW)I ( A 9  

where the quantities q(k(s))and a,(&)) are given by equation (5.5). The arbitrary 
real functions &<(s) appearing in equation (A9) satisfy the initial condition &(so)= 
0 and are to be determined. 

We now turn to equation (A7), whose solution will be obtained in the form of an 
expansion in terms of the eigenvectors U&)), <=&l-:  

( A W  

Inserting equation (A10) into equation (A1 1) and multiplying the left-hand side by 
U,, (I?($), we obtain (denoting for conveniencefF=q(k(s))) 

h,(s, S ) = C  b;(s, E)v,,(&s)) exp[-i(B<+A&))I 
'I 

+ 

After separating the explicit dependence on the variables 0 in the vector @'(s, e )  
(equation (A4)), we rewrite it in the form 

d ( s ,  e)=@'(k(s))+ [@& exp(iO,)+&(s) exp( - i O k ) ] .  (A12) 
3 

k-1 

To solve equation (All)  we consider the following two cases: 

the variables E leads to a determination of the functions ..&&), 
(i) Let (=c. The requirement for the solution to be bounded with respect to all 

where the integrand coincides with equation (5.23). Allowing for equation (A13), the 
solution of equation (AI 1) takes the form 

The arbitrary functions b,(s) given here are chosen at the initial moment of time from 
the condition bhs, 8)1,=,,=0. 
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(ii) Let c= -c. In this case by imposing an additional condition of 2n periodicity 
of the functions b;< with respect to 8, we obtain 

b&s, E) = &(s) exp(2iOr) 

where the functions &) are such that the initial condition bFr(s, S)l,=,=O is held. 
Notice that in deriving equation (A15) the assumption that the quasi-classical spectrum 
(5.9) is non-degeneration was essentially used. So, the validity of formulae (5.22)-(5.24) 
immediately follows from the results given here. 
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